Том 5
Permanent URI for this collection
Browse
Browsing Том 5 by Author "Бондаренко, Ольга"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Ǭ-зображення дiйсних чисел як узагальнення канторiвських систем числення(2022) Працьовитий, Микола; Бондаренко, Ольга; Ратушняк, Софія; Франчук, КатеринаРоботу присвячено узагальненню канторівської системи числення, яка визначається послідовністю основ( sn), 1 < sn ∈ N і послідовністю алфавітів An = {0, 1, ..., sn − 1}: [0; 1] ∋ x = ∞∑ n=1 αn / s1s2...sn, αn ∈ An, яке назване Ǭ-зображенням. Воно визначається нескінченною матрицею ||qik||, де i ∈ Ai, k ∈ N, що має властивості 0 < qik < 1, mk ∑ i=0 qik = 1, k ∈ N, ∞∏ n=1 max i {qik} = 0, а саме [0; 1] ∋ x = ai11 + ∞∑ k=2 [aikk k−1 ∏ j=1 qij (x)j ] ≡ Δi1i2...ik..., where ainn = in−1 ∑ j=0 qjn, in ∈ An, n ∈ N. У роботі розглянуто застосування вказаного зображення чисел у метричній теорії чисел, теорії розподілів випадкових величин, теорії локально складних функцій та фрактальному аналізі. Вивчено тополого-метричну структуру множини C[Ǭ; Vn] = {x : x = Δα1...αn..., αn ∈ Vn ⊂ An}. Виведено формулу для обчислення її міри Лебега: λ(C) = ∞∏ n=1 λ(Fn) / λ(Fn−1) = ∞∏ n=1 (1 − λ(Fn) / λ(Fn−1)), де F0 = [0; 1], Fn - об'єднання Ǭ-циліндрів рангу n, серед внутрішніх точок яких є точки множини C, Fn ≡ Fn−1 \ Fn. Знайдено критерій і деякі достатні умови нуль-мірності цієї множини. За додаткових умов на "матрицю" ||qik|| знайдено нормальну властивість Ǭ-зображення чисел (властивість, яку мають майже всі у розумінні міри Лебега числа). Отримані результати використано для встановлення лебегівської структури і типу розподілу випадкової величини, Ǭ-зображення якої є незалежними випадковими величинами. Доведено, що цифри Ǭ-зображення рівномірно розподіленої на [0; 1] випадкової величини є незалежними, і вказано їх розподіл. Доведено, що при обчисленні фрактальної розмірності Гаусдорфа Безиковича підмножин відрізка [0; 1] можна обмежитись покриттями Ǭ-циліндрами: Δc1...cm = {x : x = Deltac1...cki1...in..., in ∈ ∈ Ak+n}, якщо потужності алфавітів обмежені, а елементи "матриці" ||qik|| відокремлені від нуля. Для інферсора цифр Ǭ-зображення чисел, тобто функції, означеної рівністю I(x = = Δi1...in...) = Δ[m1−i1]...[mn−in]..., mn ≡ sn − 1 доведено неперервність, строгу монотонність, а для окремих випадків її сингулярність (рівність похідної нулю майже скрізь у розумінні міри Лебега).