Вплив методів добування знань на ефективність RAG-систем на основі графів
| dc.contributor.author | Андрощук, Максим | uk_UA |
| dc.date.accessioned | 2026-02-03T12:38:25Z | |
| dc.date.available | 2026-02-03T12:38:25Z | |
| dc.date.issued | 2025 | |
| dc.description | This paper investigates the impact of knowledge extraction methods on the effectiveness of RAG (Retrieval-Augmented Generation) systems that utilize knowledge graphs. It highlights that the quality of the knowledge graph, which is formed using various knowledge extraction methods, is crucial for overcoming limitations of large language models (LLMs), such as "hallucinations". The paper analyzes the architectures of LightRAG and GraphRAG, emphasizing that the selection of an optimal knowledge extraction strategy depends on specific tasks and the subject area. LLMs have advanced significantly, but they have limitations, including generating factually incorrect information (“hallucinations”) and possessing "outdated knowledge". RAG systems were proposed to address these issues by combining LLMs with external knowledge bases. This approach reduces hallucinations, ensures factual accuracy, solves the problem of outdated knowledge, and increases transparency. Knowledge graphs are powerful tools for structuring information, consisting of entities (nodes) and relations (edges). They enhance RAG systems by enabling more precise and contextually grounded retrieval compared to keyword-based searches. The quality of a knowledge graph depends on the knowledge extraction methods used, which include named entity recognition (NER), relation extraction (RE), entity linking (EL), and event extraction. Different methods, such as rule-based, classical machine learning, and deep learning approaches, have varying trade-offs in terms of accuracy, completeness, and scalability. Entity linking and knowledge graph completion are also crucial for accuracy and richness. LightRAG and GraphRAG are two main graph-based RAG systems. LightRAG uses the knowledge graph as a quick reference, requiring high precision in knowledge extraction to avoid noise degradation. GraphRAG uses the knowledge graph as a domain model, where completeness of extracted knowledge is more critical, though systematic errors are still harmful. Both systems rely on LLMs for knowledge extraction, which makes them dependent on the LLM’s quality and the size of document fragments processed. The theoretical analysis confirms that the effectiveness of RAG systems is critically dependent on knowledge extraction methods. The quality, completeness, and accuracy of the knowledge graph directly influence the RAG system’s ability to provide relevant, accurate, and truthful answers. Different RAG system architectures like LightRAG and GraphRAG have distinct requirements for knowledge graph characteristics, prioritizing either accuracy or completeness in knowledge extraction. | en_US |
| dc.description.abstract | Стаття досліджує, як методи добування знань впливають на ефективність RAG-систем, що використовують графи знань. Вона показує, що якість графа знань, сформованого різними методами добування знань, є ключовою для подолання обмежень великих мовних моделей (LLM), таких як "галюцинації". Робота аналізує архітектури LightRAG і GraphRAG та підкреслює, що вибір оптимальної KE-стратегії залежить від конкретних завдань і предметної області. | uk_UA |
| dc.identifier.citation | 111 | uk_UA |
| dc.identifier.issn | 2617-3808 | |
| dc.identifier.issn | 2617-7323 | |
| dc.identifier.uri | https://doi.org/10.18523/2617-3808.2025.8.84-87 | |
| dc.identifier.uri | https://ekmair.ukma.edu.ua/handle/123456789/38246 | |
| dc.language.iso | uk | uk_UA |
| dc.relation.source | Наукові записки НаУКМА. Комп'ютерні науки | uk_UA |
| dc.status | first published | uk_UA |
| dc.subject | RAG | en_US |
| dc.subject | графи знань | uk_UA |
| dc.subject | добування знань | uk_UA |
| dc.subject | ВММ | en_US |
| dc.subject | стаття | uk_UA |
| dc.subject | RAG | en_US |
| dc.subject | knowledge graphs | en_US |
| dc.subject | knowledge extraction | en_US |
| dc.subject | LLM | en_US |
| dc.title | Вплив методів добування знань на ефективність RAG-систем на основі графів | uk_UA |
| dc.title.alternative | Influence of knowledge extraction methods on the effectiveness of graph-based RAG systems | en_US |
| dc.type | Article | uk_UA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Androshchuk_Vplyv_metodiv_dobuvannia_znan_na_efektyvnist_RAG-system_na_osnovi_hrafiv.pdf
- Size:
- 318.9 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: