Normalization as a Key Enabler for Transferable Machine Learning in Multi-Temporal Cross-Dataset Satellite Imagery: Evidence in Cloud Detection

dc.contributor.advisorКундік, Кирилоen_US
dc.contributor.authorПолякова, Любовen_US
dc.date.accessioned2025-09-05T13:00:15Z
dc.date.available2025-09-05T13:00:15Z
dc.date.issued2025
dc.description.abstractIn this thesis, we explore the use of normalization and standardization to improve the transferability of deep learning models for cloud detection from multi-temporal satellite imagery. Specifically, we evaluate whether applying normalization techniques during preprocessing can reduce the necessity of model fine-tuning when encountering temporally shifted and externally sourced satellite images.en_US
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/36482
dc.language.isoen_USen_US
dc.statusfirst publisheden_US
dc.subjectmachine learningen_US
dc.subjectneural networksen_US
dc.subjectsemantic segmentationen_US
dc.subjectimageryen_US
dc.subjectbachelor`s thesisen_US
dc.titleNormalization as a Key Enabler for Transferable Machine Learning in Multi-Temporal Cross-Dataset Satellite Imagery: Evidence in Cloud Detectionen_US
dc.typeOtheren_US
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Poliakova_Bakalavrska_robota.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Poliakova_Bakalavrska_robota_1.pdf
Size:
11.5 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: