Dependent Types for Formal Theorem Proving: A Case Study of Hall’s Theorem

dc.contributor.advisorЖежерун, Олександр
dc.contributor.authorВласенко, Павло
dc.date.accessioned2024-04-04T05:32:05Z
dc.date.available2024-04-04T05:32:05Z
dc.date.issued2023
dc.description.abstractThis thesis investigates the role of dependent types and Curry-Howard isomorphism in formal theorem proving and programming. First, we highlight the connection between formal logic and type theory and demonstrate how dependent types allow us to encode complex properties like proofs or programs. Next, we introduce Lean, a language utilizing dependent types, and show practical examples to check that the program will never fail and be correct at compile time without needing tests. Finally, we will show an example of a more complex theorem defined in Lean – Hall’s graph theorem and how to use its proof to write the verified program.uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/28614
dc.language.isoenuk_UA
dc.statusfirst publisheduk_UA
dc.subjectlambda cubeuk_UA
dc.subjectthe Curry–Howard isomorphismuk_UA
dc.subjectsimple proofsuk_UA
dc.subjectHall’s Marriage Theoremuk_UA
dc.subjectбакалаврська роботаuk_UA
dc.titleDependent Types for Formal Theorem Proving: A Case Study of Hall’s Theoremuk_UA
dc.typeOtheruk_UA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vlasenko_Bakalavrska_robota.pdf
Size:
537.73 KB
Format:
Adobe Portable Document Format