Enhancing Temporal Smoothing in Dynamic Neural Radiance Fields
| dc.contributor.advisor | Кузьменко, Дмитро | uk_UA |
| dc.contributor.author | Вербицька, Марія | uk_UA |
| dc.date.accessioned | 2025-09-04T06:38:43Z | |
| dc.date.available | 2025-09-04T06:38:43Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | In this work, we conduct an end-to-end training and fine-tuning process for the Neural Radiance Field (NeRF) model [1] and introduce 4 experimental cases with filtering techniques [2] designed to strengthen the rendering performance. We evaluate our modifications on synthetic image data of the articulated objects. For this project, we chose the architecture of the Knowledge NeRF model [3]. It includes an original PyTorch NeRF implementation [4] alongside a projection module for dynamic scenes extension. Incorporating the rendering step adjustments allows for better results without requiring complete model re-training. Our study covers the theoretical basis of the 3D scene reconstruction problem [5] alongside the NeRF architecture, such as radiance field, volume rendering, the concept of coarse and fine networks etc. [1], provides a trained and fine-tuned model for one object of a specified motion type, and suggests four methods to handle postprocessing in Knowledge NeRF better. | en_US |
| dc.identifier.uri | https://ekmair.ukma.edu.ua/handle/123456789/36422 | |
| dc.language.iso | en_US | en_US |
| dc.status | first published | en_US |
| dc.subject | neural radiance fields | en_US |
| dc.subject | view synthesis | en_US |
| dc.subject | dynamic scenes | en_US |
| dc.subject | blender dataset | en_US |
| dc.subject | filtering | en_US |
| dc.subject | 3D scene reconstruction | en_US |
| dc.subject | bachelor`s thesis | en_US |
| dc.title | Enhancing Temporal Smoothing in Dynamic Neural Radiance Fields | en_US |
| dc.title.alternative | Оптимізація часової згладженості в динамічних нейронних полях випромінювання | uk_UA |
| dc.type | Other | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: