Прогнозування часових рядів методом LSTM

dc.contributor.advisorЩестюк, Наталія
dc.contributor.authorПоляков, Михайло
dc.date.accessioned2022-01-17T21:27:27Z
dc.date.available2022-01-17T21:27:27Z
dc.date.issued2021
dc.description.abstractTime-series forecasting is a complex problem. Forecasting includes using models to fit historical information and using it to predict future data points. There are multiple methods of forecasting time-series data, including autoregressive models, like ARIMA, using gradient boosting like XGBoost, and more recently, using neural networks. The different techniques might be better for different types of data, and most of the time, only comparison between models can show the best model. We would try creating an LSTM based neural network with a multi-step multiple output strategy in this work. The completed model is tested on two different datasets in nature, power usage, and stock market prices.uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/22286
dc.language.isoenuk_UA
dc.statusfirst publisheduk_UA
dc.subjectTime-series forecasting strategiesuk_UA
dc.subjectLSTMuk_UA
dc.subjectмагістерська роботаuk_UA
dc.titleПрогнозування часових рядів методом LSTMuk_UA
dc.title.alternativeTime-series forecasting using LSTMuk_UA
dc.typeOtheruk_UA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Poliakov_Prohnozuvannia_chasovykh_riadiv_metodom_LSTM.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
Description:
магістерська робота
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
7.54 KB
Format:
Item-specific license agreed upon to submission
Description: