Object feature extraction for YOLO detectors

dc.contributor.advisorШвай, Надія
dc.contributor.authorАбашкін, Олександр
dc.date.accessioned2024-03-22T11:29:52Z
dc.date.available2024-03-22T11:29:52Z
dc.date.issued2023
dc.description.abstractThe main goal of the research: To create an architecture that can surpass in quality and speed the solutions of that time such as the deformable part models (DPM) that were using the sliding window approach where the classifier is used for each evenly spaced location, and a the R-CNN that were using a network for generation potential bounding boxes and as a second stage applies a classifier on this regions.uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/28354
dc.language.isoukuk_UA
dc.relation.organisationНаУКМАuk_UA
dc.statusfirst publisheduk_UA
dc.subjectYOLO architectureuk_UA
dc.subjectBatch Normalizationuk_UA
dc.subjectHigh-Resolution Classifieruk_UA
dc.subjectMobileNetV1uk_UA
dc.subjectмагістерська роботаuk_UA
dc.titleObject feature extraction for YOLO detectorsuk_UA
dc.typeOtheruk_UA
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Abashkin_Mahisterska_robota.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Abashkin_Mahisterska_robota 2.pdf
Size:
140.27 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: