Переклад зображення в зображення на прикладі архітектури Pix2Pix GAN

dc.contributor.advisorШвай, Надія
dc.contributor.authorПроцик, Олексій
dc.date.accessioned2024-04-10T10:24:19Z
dc.date.available2024-04-10T10:24:19Z
dc.date.issued2022
dc.description.abstractIn this master’s thesis, the use of an architecture spinning off pix2pix GAN is being investigated for image-to-image translation, transforming segmentation maps into real images. Thesis is split up into several sections: introduction, two sections covering theoretical background, and analysis and conclusion. The first section is the theoretical background, which provides a background on how neural networks and generative adversarial networks work, necessary definitions, and explanations of all the essential components. The second section is the experiments and analysis section, where the dataset is presented, all the experiment parameters and runs, logs, evaluation, and comparison of the novel approach of using CLIP as a loss for image-to-image translation with previous methods on a complex dataset. In conclusion, all the experiments and their results are summarized. In the literature list is all the used literature.uk_UA
dc.identifier.urihttps://ekmair.ukma.edu.ua/handle/123456789/28819
dc.language.isoenuk_UA
dc.relation.organisationНаУКМАuk_UA
dc.statusfirst publisheduk_UA
dc.subjectU-Netuk_UA
dc.subjectVGG perceptual lossuk_UA
dc.subjectBaseline – Pix2Pix GANuk_UA
dc.subjectмагістерська роботаuk_UA
dc.titleПереклад зображення в зображення на прикладі архітектури Pix2Pix GANuk_UA
dc.typeOtheruk_UA
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Protsyk_Mahisterska_robota.pdf
Size:
16.53 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Protsyk_Mahisterska_robota 2.pdf
Size:
428.78 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: