113 Прикладна математика
Permanent URI for this collection
Освітньо-наукова програма: Прикладна математика
Browse
Browsing 113 Прикладна математика by Subject "AlexNet"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cемантична сегментація зображень з використанням Transformer архітектури(2022) Іванюк-Скульський, Богдан; Швай, НадіяIn this work we have presented a model that efficiently balances between local representations obtained by convolution blocks and a global representations obtained by transformer blocks. Proposed model outperforms, previously, standard decoder architecture DeepLabV3 by at least 1% Jaccard index with smaller number of parameters. In the best case this improvement is of 7%. As part of our future work we plan to experiment with (1) MS COCO dataset pretraining (2) hyperparameters search.Item Побудова семантичної моделі зображення(2023) Герасимчук, Д.; Глибовець, АндрійМетою даної роботи є розробка та побудова семантичної моделі для вирішення проблеми розуміння зображення комп'ютером. Ця проблема є дуже актуальною і складною, і потребує розробки нових підходів та методів. У порівнянні з іншими задачами комп'ютерного зору, такими як класифікація зображень або створення текстового опису, розуміння зображень вимагає глибшого аналізу та інтерпретації контексту, об'єктів та взаємозв'язків всередині зображення. Перший розділ даної роботи присвячений актуальності та проблематиці побудови семантичної моделі зображення. В цьому розділі відзначається значимість вирішення проблеми розуміння зображень комп'ютером, оскільки це має великий потенціал для різних областей, включаючи комп'ютерне зорове сприйняття, автоматизацію процесів та покращення інтерактивних систем. У другому розділі проведено детальний аналіз існуючих рішень для задач класифікації зображень, текстового опису зображень та знаходження візуальних зв'язків на зображеннях. Описані різні підходи, використовані методи та їх обмеження.У третьому розділі детально описується процес побудови власної моделі та подання результатів її роботи. Цей розділ включає в себе опис використаних алгоритмів, архітектури моделі, методів навчання та оцінки. Крім того, представлені результати експериментів та аналіз отриманих результатів